If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then  $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$|\overrightarrow{\mathrm{R}}| \leq|\overrightarrow{\mathrm{A}}|+|\overrightarrow{\mathrm{B}}|$

Similar Questions

Two forces ${F_1} = 1\,N$ and ${F_2} = 2\,N$ act along the lines $x = 0$ and $y = 0$ respectively. Then the resultant of forces would be

The angle between vector $(\overrightarrow{{A}})$ and $(\overrightarrow{{A}}-\overrightarrow{{B}})$ is :

  • [JEE MAIN 2021]

If $\left| {{{\vec v}_1} + {{\vec v}_2}} \right| = \left| {{{\vec v}_1} - {{\vec v}_2}} \right|$ and ${{{\vec v}_1}}$ and ${{{\vec v}_2}}$ are finite, then

In an octagon $ABCDEFGH$ of equal side, what is the sum of $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ if, $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$

  • [JEE MAIN 2021]

$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ and $\overrightarrow C = 6\hat i - 2\hat k$.Value of $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ would be